Теория систем автоматического регулирования

       

О синтезе систем с ЦВМ методом логарифмических амплитудных характеристик


делил W(e^jwTц) на Tц

Изображенный дискретный фильтр имеет в области частот

w ЛАЧХ & ЛФЧХ, использовать которые при синтезе неудобно.

Перевод с помощью v-преобразования ЧХ в область псевдочастот l, позволяет получить ЛАЧХ, которые по виду подобны ЛАЧХ непрерывных систем.

Последовательность преобразований следующая:

Wэ(s)ЧW(s) ® W(z) ®

W(v) ® W(jlTц/2).

Эти преобразования при использовании экстраполятора нулевого порядка могут быть формализованы. Пусть ПФ непрерывной части имеет вид:

.

Техническая реализуемость систем с ЦВМ позволяет ввести положения:

Пусть для частоты среза непрерывной части выполняется условие

wср < 2/Tц.

Все постоянные времени знаменателя разделим на две группы - до и после диапазона от частоты среза до частоты дискретизации:



T1, ..., Tq > (1/wср

... 1/wц) > Tq+1, ..., Tn.

Постоянные времени в числителе t1, ...,

tm пусть больше чем 1/wср.

Поскольку система должна быть устойчива, пусть наклон ЛАЧХ на wср

будет -20 дБ/дек.

Принятые положения, позволяют описать свойства систем в области низких и высоких частот двумя ПФ:

.

Теперь для формального перехода в область псевдочастот

l (минуя промежуточные z и v-преобразования) достаточно подставить в ПФ Wo(s)НЧ

вместо s jl и умножить ее на множитель (1-jlTц/2), для низких частот приближенно равный 1.

А ПФ Wo(s)ВЧ будет соответствовать выражение:

.

Модуль которого:

.

Результирующий фазовый сдвиг обеих областей:

.

Резюме:

В области НЧ (w < 2/Tц) асимптотическая ЛАЧХ системы с ЦВМ практически сливается с ЛАЧХ непрерывной части (множитель (1-jlTц/2) » 1)

и можно положить l » w. Это позволяет один к одному использовать разработанную для непрерывных систем методику формирования НЧ части желаемой ЛАЧХ.

В области ВЧ отличия вносит множитель (1-jlTц/2), ухудшающий условия устойчивости. Поэтому при формировании запретной ВЧ области в расчетных формулах величина Tц/2 должна быть просуммирована с малыми постоянными времени:



Содержание раздела